Effects of Pretilachor Pyribenzoxim Pollution on the Water Quality, Serum Biochemical Indices, and Behavioural Response of *Oreochromis niloticus* Juveniles

Ibidun Comfort Adene a*

a Department of Fisheries and Aquaculture, Adekunle Ajasin University, Akungba Akoko, Nigeria.

Author’s contribution

The sole author designed, analysed, interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/AJRAF/2023/v9i3214

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/100604

Received: 09/04/2023
Accepted: 12/06/2023
Published: 22/06/2023

ABSTRACT

Aims: The effects of Pretilachor pyribenzoxim (PP) pollution on the water quality, serum biochemical indices, and behavioural response of *Oreochromis niloticus* Juveniles were studied.

Study Design: The completely randomized design was used in this study.

Place and Duration of Study: The experiment was carried out in the Central Laboratory of the Fisheries and Aquaculture Department, Faculty of Agriculture, Adekunle Ajasin University Akungba-Akoko, Nigeria, between January and March 2023.

Methodology: The experiment was carried out in 30 L of non-chlorinated and aerated water in rectangular plastic tanks (45cm x 30cm x 30cm). 250 juveniles *O. niloticus* of both sexes were collected from Federal University of Technology, Akure, Ondo state and acclimatized for 14days in the laboratory. During rearing period, the fish were fed coppen feed at 2% body weight. In a...
definitive test, a group of 10 fish specimen (11.3-17.5cm length and 10.5-32.3g weight) were treated at random to nominal PP doses of 0.0, 0.10, 0.125, 0.150, 0.175, and 0.2 ml being diluted in 30 litres of water and labelled T1, T2, T3, T4, T5 and T6, respectively in triplicate. The LC₅₀ of PP, test water's physicochemical, behavioural responses and serum biochemical indices were determined.

Results: The dissolved oxygen depleted (P<0.05) in T5 and T6, compared to T1 and the rest of the treatments. The water conductivity increases (P<0.05) with an increased concentration of PP contamination. The water's total dissolved solids levels increased progressively with an increase in PP concentration. The total dissolved solids in T5 and T6 were similar (P>0.05) to T4 but lower (P<0.05) than T1 and T2. Juveniles in treatments 2, 3, 4, 5 and 6 shows behavioural responses such as loss of reflex, fin deformation, erratic swimming, air gulping, and moulting. The serum total protein of the juveniles in treatments 2, 3, 4, 5 and 6 was lower (P<0.05) than T1. Serum creatinine level increased with increased PP contamination from treatments 1 to 6. The serum aspartate aminotransferase (AST) of the juvenile in T3, T4, T5 and T6 were higher (P<0.05) than in T1. The serum Alanine aminotransferase (ALT) of the juvenile in T2, T3, T4, T5 and T6 were significantly (P<0.05) higher than T1.

Conclusion: The exposure of juvenile O.niloticus to PP contamination affected the physicochemical properties of water, behaviour and Serum biochemicals of juvenile O. niloticus fish. Hence, leaching of pp into water bodies through Agricultural activities should be monitored to reduce lost of fish which can lead to economic detune.

Keywords: Behavioural changes; O. niloticus; pretilachor pyribenzoixim; serum biochemical indices; toxicity; water quality.

ABBREVIATIONS

PP : Pretilachor pyribenzoxim
ALT : Alanine aminotransferase
AST : Aspartate aminotransferase
ALP : Alkaline phosphatase
DO : Dissolved oxygen
TDS : Total dissolved solids

1. INTRODUCTION

One of the most popular chloroacetanilide herbicides for controlling annual grasses in rice fields and several broadleaf weeds is pretilachor pyribenzoixim [1]. It is a significant herbicide used for rice weed management in Nigeria [2]. Pretilachor pyribenzoixim and other herbicides were also used in seed beds, seed transplant fields, and some crop fields such as wheat, barley, cotton, vegetables, and peanuts [3]. Herbicides escape and leached into aquatic environment because, agricultural country sides are close to bodies of water. The organisms in the waterbodies such as fish and other aquatic species are negatively impacted by the repeated and negligent use of herbicides, careless handling, accidental spills, and the release of untreated effluents into natural waterways [3]. The pesticide can disintegrate quickly, but in the absence of adequate microbial degraders and under conditions of low temperature, low moisture, high alkalinity, and persistent biological activity, it may persist in soils for a very long time [3,4].

Recent research has shown the toxicity of Pretilachor pyribenzoixim and other herbicides on fish and other aquatic animals, this has drawn the attention of researchers to the xenobiotic contamination of aquatic habitats [3,5]. Fish are the most notable of the non-target creatures and also crucial in determining the possible risk of contamination in aquatic environments [6]. Since chloroacetamide herbicides were found to be likely carcinogens, the poisoning of aquatic environments by chloroacetamide herbicides like pretilachlor has drawn more attention [7]. Pretilachlor (2-chloro-2′,6′-diethyl-N-[2-propoxyethyl] acetanilide) is a systemic herbicide that is widely used to suppress weeds in rice fields. This herbicide prevents the synthesis of long-chain fatty acids, which slows cell division [8]. Herbicide-induced behavioural changes in fish are still very rare [7], but sensitive early warnings are provided by behavioural changes brought on by chemical exposure than by traditional diagnostic procedures. Behavioural toxicity of fish most frequently used measurements are swimming-oriented reactions, opercular movement, feeding attempts, jerk swimming, and schooling [7].

The Nile Tilapia, also known as O. niloticus, is a significant fish in aquaculture and catch fisheries.
It is frequently widespread and present in Nigerian water bodies [9]. Up to 3.5kg has been seen as its maximum size as it grows to a respectable size [10]. The knowledge on the effects of Pretiolachor pyribenzoxim on several local fish species, such as *O. niloticus* is scarce, even though farmers often use it in farmlands and there may be an ecotoxicological impact associated with its uses. In light of the aforementioned, the current study was conducted to assess the impact of the herbicide pretiolachlor on juvenile *O. niloticus* by analysing their behavioural activities and serum biochemical indices following exposure to the herbicide.

2. MATERIALS AND METHODS

2.1 Experimental Site

The experiment was carried out in the Central Laboratory of the Fisheries and Aquaculture Department, Faculty of Agriculture, Adekunle Ajayi University Akungba-Akoko, Nigeria; using a plastic tank of 50 litres capacity (45cm x 30cm x 30cm). Each tank was filled with 30 litres of non-chlorinated water.

2.2 Fish Collection and Experiment

Two hundred and fifty (250) healthy *O. niloticus* juveniles of 11.3-17.5cm length and 10.5-32.3g weight were purchased from a reputable hatchery in Akure, Nigeria. The Adekunle Ajayi University's Animal Ethics Committee established guidelines for the care of laboratory animals, and these guidelines were followed when treating the fish. The health status of selected fish was assessed based on the presence or absence of physical injuries and other morphological deformities. The juveniles were acclimatized under laboratory conditions for 14 days before the commencement of the experiment. During the acclimatization period, the fish were fed daily with coppen feed at 2% body weight (BW) and covered with netting materials to prevent jumping out of the water. The water was changed daily, uneaten feed and faecal matters were siphoned out and dead fish were also removed to minimize contamination of water.

2.3 Source and Processing of Pretiolachort Pyribenzoxim

320 g/l of Pretiolachor pyribenzoxim (PP) with Batch No ERW2021030-1 and NAFDAC Reg No A5-1272 was purchased in an Agro-Chemical shop at Ikare Market, Ondo State, Nigeria. The Pretiolachor pyribenzoxim was mixed directly with 30 litres of water for each treatment (T) as follows:

T1: Control, no PP
T2: 0.10 ml of PP dissolved in 30 litres of water
T3: 0.125 ml of PP dissolved in 30 litres of water
T4: 0.150 ml of PP dissolved in 30 litres of water
T5: 0.175 ml of PP dissolved in 30 litres of water
T6: 0.20 ml of PP dissolved in 30 litres of water

2.4 Toxicity bioassay

According to established procedures, a static bioassay system in the laboratory was used for the final test and an acute toxicity experiment to obtain the 96-hour LC50 values of Pretiolachor pyribenzoxim [11]. Before determining the concentrations of the test solution for the definitive test, a range finding test was conducted [12]. The experiment was carried out in 30 L of non-chlorinated and aerated water in rectangular plastic tanks (45cm x 30cm x 30cm). The behavioural actions of fish in each treatment was observed daily. In a definitive test, a group of 10 fish specimens (11.3-17.5cm length and 10.5-32.3g weight) were treated at random to nominal Pretiolachor pyribenzoxim doses of 0.0, 0.10, 0.125, 0.150, 0.175, and 0.2 ml being diluted in 30 litres of water. The experiment was conducted in triplicate, and fish mortality due to exposure to Pretiolachor pyribenzoxim was tracked for up to 96 hours at intervals of 24 hours to obtain LC50 values of the test pesticides (Fig. 1). physicochemical characteristics, including temperature, dissolved oxygen, pH, total hardness, and conductivity [11-15]. The behavioural reactions (loss of reflex, erratic swimming, Fin deformation and air gulping and moulting) of the test fish in each experimental tank was observed at 24hr interval for 96hr.

2.5 Blood Collection and Analysis

After 96 hours of exposure, the fish's blood was collected. A disposable hypodermic syringe and needle were used to draw blood through the vertebral caudal blood artery. A 10 ml plain sample bottle was used to hold the blood sample and centrifuged. Thereafter the serum was decanted into another well-labelled plain blood sample bottle and kept in a freezer until used for laboratory analysis. Biochemical indices analysed i.e. total protein, creatinine, cholesterol, alanine aminotransferase (ALT), and aspartate...
aminotransferase (AST) activities were determined using a Reflotron ® Plus 8C79 (Roche Diagnostic, GmbH Mannheim, Germany), using commercial kits [16,17].

2.6 Data Analysis

Data obtained for biochemical parameters were subjected to analysis of variance (ANOVA) making use of the Statistical Package for Social Science (SPSS) version 20.0; while the difference between treatments means was determined by Duncan's multiple range test of the same package [18].

3. RESULTS AND DISCUSSION

3.1 Results

The effects of Pretiolachor pyribenzoxim (PP) contamination on the physicochemical properties of water are shown in Table 1. The dissolved oxygen was significantly (P<0.05) depleted in T5 and T6, compared to the T1 and the rest treatments. The water conductivity increases (P<0.05) with increased concentration of PP contamination; specifically the conductivity in T4, T5 and T6 were significantly (P<0.05) higher than T1, and T2. The water's total dissolved solids levels increased progressively with an increase in PP concentration. The total dissolved solids in T5 and T6 were similar (P>0.05) to T4 but significantly (P<0.05) lower than T1 and T2.

Effects of Pretiolachor pyribenzoxim (PP) contamination on the behavioural response of Oreochromis niloticus juveniles are presented in Table 2. The juveniles in the control group (T1) displayed normal behavioural response was observed. However, among those juveniles in treatments 2, 3, 4, 5 and 6 behavioural responses such as loss of reflex, fin deformation, erratic swimming, air gulping, and moulting were observed.

Table 3 shows the effects of Pretiolachor pyribenzoxim (PP) contamination on the serum biochemical indices of Oreochromis niloticus juveniles. The serum total of the juveniles in treatments 2, 3, 4, 5 and 6 was significantly (P<0.05) low when compared to T1. The serum creatinine of the juveniles was significantly (P<0.05) affected by the PP exposure, such that serum creatinine level increased with increased PP contamination from treatments 1 to 6. The serum aspartate aminotransferase concentration of the juvenile in T3, T4, T5 and T6 were significantly (P<0.05) higher than T1. The serum Alanine aminotransferase concentration of the juvenile in T2, T3, T4, T5 and T6 were significantly (P<0.05) higher than T1. The serum cholesterol concentration was not significantly (P>0.05) affected by the treatments.
Table 1. Effects of pretiolachor pyribenzoxim (pp) contamination on the physicochemical properties of water

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Dissolved Oxygen (mg/l)</th>
<th>Temperature (°C)</th>
<th>Conductivity (µM/cm)</th>
<th>pH</th>
<th>Total Dissolved Solids (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>6.46^a</td>
<td>23.92</td>
<td>200.11^c</td>
<td>7.12</td>
<td>116.81^c</td>
</tr>
<tr>
<td>T2</td>
<td>6.21^a</td>
<td>23.23</td>
<td>200.29^c</td>
<td>7.12</td>
<td>119.28^b</td>
</tr>
<tr>
<td>T3</td>
<td>5.96^a</td>
<td>23.27</td>
<td>206.92^bc</td>
<td>7.07</td>
<td>119.65^b</td>
</tr>
<tr>
<td>T4</td>
<td>5.21^a</td>
<td>23.51</td>
<td>215.29^b</td>
<td>7.06</td>
<td>121.20^ab</td>
</tr>
<tr>
<td>T5</td>
<td>5.11^b</td>
<td>26.62</td>
<td>229.19^a</td>
<td>7.14</td>
<td>125.37^a</td>
</tr>
<tr>
<td>T6</td>
<td>5.04^b</td>
<td>23.35</td>
<td>231.12^a</td>
<td>7.02</td>
<td>126.47^a</td>
</tr>
</tbody>
</table>

SEM 0.14 0.55 3.28 0.02 1.06

P-Value 0.01 0.45 0.01 0.44 0.01

T1: Control, no PP; T2: 0.10 ml of PP dissolved in 30 litres of water; T3: 0.125 ml of PP dissolved in 30 litres of water; T4: 0.150 ml of PP dissolved in 30 litres of water; T5: 0.175 ml of PP dissolved in 30 litres of water; T6: 0.20 ml of PP dissolved in 30 litres of water; SEM: Standard error of the mean. Mean values with the same superscript in the column are not significantly different from each other at (P>0.05).

Table 2. Effects of pretiolachor pyribenzoxim (pp) contamination on the behavioural response of *Oreochromis niloticus* juveniles

<table>
<thead>
<tr>
<th>Behavioural response</th>
<th>Treatments</th>
<th>Duration of Exposure (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Loss of Reflex</td>
<td>T1: 0.00 ml PP in 30L of H₂O</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>T2: 0.10 ml PP in 30L of H₂O</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>T3: 0.125 ml PP in 30L of H₂O</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>T4: 0.15 ml PP in 30L of H₂O</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>T5: 0.175 ml PP in 30L of H₂O</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>T6: 0.12 ml PP in 30L of H₂O</td>
<td>+</td>
</tr>
<tr>
<td>Air Gulping</td>
<td>T1: 0.00 ml PP in 30L of H₂O</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>T2: 0.10 ml PP in 30L of H₂O</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>T3: 0.125 ml PP in 30L of H₂O</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>T4: 0.15 ml PP in 30L of H₂O</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>T5: 0.175 ml PP in 30L of H₂O</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>T6: 0.12 ml PP in 30L of H₂O</td>
<td>+</td>
</tr>
<tr>
<td>Erratic Swimming</td>
<td>T1: 0.00 ml PP in 30L of H₂O</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>T2: 0.10 ml PP in 30L of H₂O</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>T3: 0.125 ml PP in 30L of H₂O</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>T4: 0.15 ml PP in 30L of H₂O</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>T5: 0.175 ml PP in 30L of H₂O</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>T6: 0.12 ml PP in 30L of H₂O</td>
<td>+</td>
</tr>
<tr>
<td>Fin deformation</td>
<td>T1: 0.00 ml PP in 30L of H₂O</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>T2: 0.10 ml PP in 30L of H₂O</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>T3: 0.125 ml PP in 30L of H₂O</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>T4: 0.15 ml PP in 30L of H₂O</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>T5: 0.175 ml PP in 30L of H₂O</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>T6: 0.12 ml PP in 30L of H₂O</td>
<td>+</td>
</tr>
<tr>
<td>Moulting</td>
<td>T1: 0.00 ml PP in 30L of H₂O</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>T2: 0.10 ml PP in 30L of H₂O</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>T3: 0.125 ml PP in 30L of H₂O</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>T4: 0.15 ml PP in 30L of H₂O</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>T5: 0.175 ml PP in 30L of H₂O</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>T6: 0.12 ml PP in 30L of H₂O</td>
<td>+</td>
</tr>
</tbody>
</table>

Note: +: Observed; -: Not-observed
Table 3. Effects of pretiolachor pyribenzoaxim (pp) contamination on the serum biochemical indices of Oreochromis niloticus juveniles

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Total protein (g/dl)</th>
<th>Creatinine (mg/dl)</th>
<th>AST (U/L)</th>
<th>ALT (U/L)</th>
<th>Cholesterol (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>9.95<sup>a</sup></td>
<td>0.67<sup>a</sup></td>
<td>61.78<sup>c</sup></td>
<td>21.16<sup>c</sup></td>
<td>81.30</td>
</tr>
<tr>
<td>T2</td>
<td>7.76<sup>b</sup></td>
<td>0.71<sup>b</sup></td>
<td>66.26<sup>bc</sup></td>
<td>27.96<sup>a</sup></td>
<td>82.80</td>
</tr>
<tr>
<td>T3</td>
<td>7.53<sup>b</sup></td>
<td>0.76<sup>b</sup></td>
<td>73.31<sup>ab</sup></td>
<td>27.24<sup>a</sup></td>
<td>80.64</td>
</tr>
<tr>
<td>T4</td>
<td>7.94<sup>b</sup></td>
<td>0.80<sup>ab</sup></td>
<td>72.97<sup>ab</sup></td>
<td>26.16<sup>a</sup></td>
<td>82.35</td>
</tr>
<tr>
<td>T5</td>
<td>7.36<sup>b</sup></td>
<td>0.86<sup>a</sup></td>
<td>77.01<sup>a</sup></td>
<td>27.94<sup>a</sup></td>
<td>91.50</td>
</tr>
<tr>
<td>T6</td>
<td>7.21<sup>b</sup></td>
<td>0.89<sup>a</sup></td>
<td>74.97<sup>a</sup></td>
<td>28.66<sup>a</sup></td>
<td>81.03</td>
</tr>
<tr>
<td>STD</td>
<td>1.25</td>
<td>0.00</td>
<td>6.31</td>
<td>2.91</td>
<td>8.33</td>
</tr>
<tr>
<td>P-Value</td>
<td>0.04</td>
<td>0.02</td>
<td>0.04</td>
<td>0.01</td>
<td>0.66</td>
</tr>
</tbody>
</table>

ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; T1: Control, no PP; T2: 0.10 ml of PP dissolved in 30 litres of water; T3: 0.125 ml of PP dissolved in 30 litres of water; T4: 0.150 ml of PP dissolved in 30 litres of water; T5: 0.175 ml of PP dissolved in 30 litres of water; T6: 0.20 ml of PP dissolved in 30 litres of water; SEM: Standard error of the mean.

Mean values with the same superscript in the column are not significantly different from each other at (P>0.05)

3.2 Discussion

The physicochemical and biological properties of water have a major role in determining a water sheet's productivity [19]. The observed decrease in dissolved oxygen in T5 and T6 in this study implies that the concentration of PP in T5 and T6 was sufficient to change the water's chemical makeup, which in turn adversely affected the level of dissolved oxygen in those treatment groups [20]. Inferentially, PP water contamination at concentrations of 0.20 ml per 30 litres of water and 0.17 ml per litre of water could lower the amount of dissolved oxygen. According to earlier research, low dissolved oxygen has an impact on fish metabolism, growth, development, and motility [19].

As high or low conductivity ranges are utilised to detect environmental changes and contamination, conductivity tests are of utmost relevance in assessing water quality [21]. The rise in water conductivity seen in this study together with an increase in PP concentration, particularly from concentrations of 0.015 ml per 30 litres of water suggests that PP contamination may harm the aquatic environment because an increase in conductivity causes osmotic stress in aquatic life, which ultimately changes biological communities [21].

Because the density of total dissolved solids controls how much water flows into and out of an organism's cells, changes in the concentration of dissolved solids can be hazardous to fish. Too high or too low of a concentration can stunt the fish's growth or even kill it [22]. Therefore, based on this fact, the relatively elevated total dissolved solid reported from concentrations of 0.015 ml PP per 30 litres of water further supports the ability of the contaminant to significantly reduce the water quality.

Poor water quality will have an impact on fish and other aquatic species, which will cause death and behavioural changes [23]. The behavioural response seen when O. niloticus was exposed to PP is comparable to that seen when Cyprinus carpio was exposed to various doses of fenthion by Alkahemal- Balawi et al. [24]. The fishes in treatment groups that were exposed to PP in this study displayed some abnormal behaviour, such as air gulping, erratic swimming, deformed fins, and moulting, which are caused by inhibition of acetylcholinesterase activity. Hence, leading to accumulation of acetylcholine in cholinergic synapses that causes hyperstimulation of the toxicant and exhaustion due to respiratory difficulty [25,26]. According to reports, stressed fish exhibit hyperactivity, and to escape the stressful environment, they need more oxygen to meet their energy needs [23].

Fish and other aquatic life are negatively impacted by toxins or pollutants, and tissues overloaded with toxins or pollutants may also have their body's oxidative metabolism, including protein synthesis, glycolysis, and lipid synthesis, affected [27]. In addition, changes in the biochemical blood profile reveal changes in the organism's metabolism and biochemical functions brought on by the effects of various pollutants, and they enable researchers to better understand how these pollutants work [28].

Blood serum contains blood proteins, commonly known as serum proteins. They perform a variety of tasks, such as transporting lipids, hormones,
vitamins, and minerals to support immune system activity [29]. The decreased serum total protein concentration associated with PP exposure or pollution in this study may suggest that the pollutant accelerated the process of liver or kidney deterioration or interfered with normal/proper protein digestion or absorption [30]. This result agreed with previous reports by [31] and [29], who observed decreased protein concentration in the various concentrations of pretilachlor exposure. The fish’s altered energy metabolism and protein structure may be the cause of the lower total protein generated after PP exposure [29]. Enzymes in fish are thought to be sensitive biochemical toxicity markers [32], and the probability of kidney, heart, and other muscle damage in the fish as a result of their exposure to PP is thus indicated by the rise in serum creatinine, AST, and ALT in juveniles exposed to PP in this study [33]. The elevated AST and ALT recorded in juveniles due to PP exposure in this study are in tandem with [34], who recorded elevated AST and ALT following their exposure to some herbicides. The adverse effects of pollutants or toxic chemicals on the liver and kidney were blamed for the increase in the activity of serum ALT, AST, and creatinine in *O. niloticus* [35].

4. CONCLUSION

PP contamination has negative effects on the physicochemical properties such as dissolved oxygen, conductivity and total dissolved solids of water. In addition, water contamination by PP produces behaviours such as loss of reflex, air gulping, erratic swimming, fin deformation and moulting in the juveniles. Finally, PP water contamination caused the reduction of the serum total protein and elevated creatinine, AST and ALT. Therefore to reduce the severe risk related to the use of agrochemicals, Agricultural usage of PP in the environment, especially near water bodies, must be controlled.

ETHICAL APPROVAL

The Adekunle Ajasin University’s Animal Ethics Committee established guidelines for the care of laboratory animals, and these guidelines were followed when treating the fish.

COMPETING INTERESTS

The author has declared that no competing interests exist.

REFERENCES

16. CCREM. Canadian Water Quality Guidelines; Canadian Council of Resources and Environmental Ministry, Inland Waters Directorate, Environment Canada: Ottawa, ON, Canada; 1991.
17. IJC. New and revised great lakes water quality objectives. great lake basin, windsor; IJC: Ottawa, ON, Canada; 1977.
32. Ugborome AP, Bob-manuel KNO, Green A, Taylorharry O. Biochemical toxicity of Corexit 9500 dispersant on the gills, liver
and kidney of juvenile *Clarias gariepinus*. Fish Aquatic Sci. 2019;22:15.0
Available: https://doi.org/10.1186/s41240-019-0131-6

© 2023 Adene; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/100604